

SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 11. - Special Bioreactors

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School

UNIVERSIDAD FRANCISCO DE VITORIA

ISSUES IN THIS UNIT

SPECIAL BIOREACTORS

AIMS FOR TODAY'S LESSON

TALKING ABOUT OTHER PARTICULAR KINDS OF

BIOREACTORS:

Solid State Fermentation

Pulsating Bioreactors

Photobioreactors

Process intensification

Microbial Fuel Cells

. . .

REFERENCES:

> Asenjo, J.A. y Merchuck, J.C. (1994), *Bioreactor System Design*. Marcel

Dekker. 1-12.

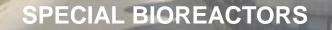
> Atkinson, B. (2002), *Reactores Bioquímicos*, Reverté (Barcelona).

> Bailey, J.E., Ollis D.F. (1986), *Biochemical Engineering Fundamentals*,

McGraw-Hill (Nueva York).

SPECIAL BIOREACTORS

1.- SPECIAL BIOREACTORS


2.- SOLID STATE FERMENTATIONS

3.- PULSATING BIOREACTORS

4.- PHOTOBIOREACTORS

5.- PROCESS INTENSIFICATION

6.- MICROBIAL FUEL CELLS

1.- SPECIAL BIOREACTORS

SPECIAL BIOREACTORS

CLASSIFICATION OF BIOREACTORS

According:

- A. To geometry of vessel.
- B. To operational conditions
- C. To involved phases.

SPECIAL BIOREACTORS

D. To Biocatalyst status

Introduction

Process Intensification

CLASSIFICATION OF BIOREACTORS

BIOCATALYST STATUS

- Free Biocatalysts (in suspension)
- Immobilized Biocatalysts
- Special Biocatalysts

Universidad Francisco de Vitoria **UFV** Madrid

Introduction

CLASSIFICATION OF BIOREACTORS

BIOCATALYST STATUS

Special Biocatalysts

- Substrate = solid > Solid State Fermentation
- Light energy is needed for transformation (photosynthesis)

→ Photobioreactors.

- Simultaneous transformation and total or partial separation of
- products
 intensification of processes

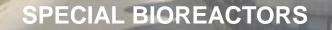
Universidad Francisco de Vitoria **UFV** Madrid

CHALLENGES AND TRENDS IN FERMENTATION PROCESSES:

- Microbial proteins
- Plant tissues
- Obtaining Enzymes
- Cultures of mammalian cells
- Microbial leaching

Universidad Francisco de Vitoria **UFV** Madrid

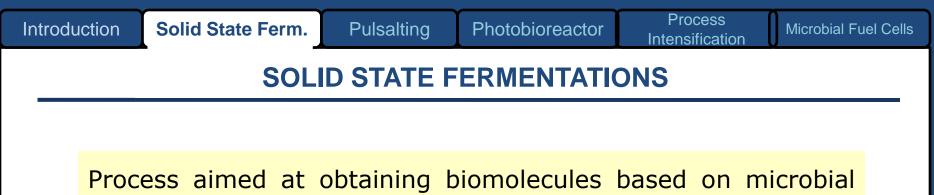
1.- SPECIAL BIOREACTORS


2.- SOLID STATE FERMENTATIONS

3.- PULSATING BIOREACTORS

4.- PHOTOBIOREACTORS

5.- PROCESS INTENSIFICATION


6.- MICROBIAL FUEL CELLS

SPECIAL BIOREACTORS

Process aimed at obtaining biomolecules based on microbial growth on a solid support.

• Alternative to fermentations in liquid medium.

SPECIAL BIOREACTORS

- Pharmaceutical industries, food cosmetics, fuels, textile, enzyme production, ...
- Advances in control and instrumentation allow high productivities.

PHENOMENOLOGY:

• <u>GAS PHASE</u>: depending on the culture:

areobiosis / anaerobiosis.

- LIQUID PHASE: humidity.
- <u>SOLID PHASE</u>: microorganisms, substrate, support, products,...

REACTORS:

- <u>TANK REACTORS</u>
- <u>ROTATING REACTORS</u>

Universidad Francisco de Vitoria **UFV** Madrid

Introduction

Process Intensification

SOLID STATE FERMENTATIONS

Universidad Francisco de Vitoria **UFV** Madrid

ADVANTAGES:

• High volumetric productivity.

SPECIAL BIOREACTORS

- Greater simplicity and low energy requirements.
- Correct agitation and mixing allows aeration requirements.
- Natural habitat of many bacteria and fungi can be reproduced.
- Post-fermentative stages are simplified.

DISADVANTAGES:

- Heterogeneous medium: bad mixture
- Difficult control
- Bigger volumes \rightarrow gradients (mycelia breakage, ...)

Universidad Francisco de Vitoria **UFV** Madrid

VARIABLES:

- Humiduty
- % Inoculum
- Temperature
- pH
- Particle Size
- Aeration / agitation
- Food: pre-treatment
- Sterility: vapor, chemical agents

Universidad Francisco de Vitoria **UFV** Madrid

EXAMPLE 1: soy sauce production

KOGI METHOD

1st PHASE: Aerobic ROTATING FERM.

molds (*Aspergillus, Rhizopus*)

cereal grains (rice, corn, ...)

2_{nd} PHASE: Anaerobic (submerged)

yeasts (Saccharomyces, Torulopsis)

8-10 months

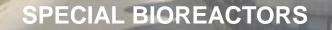
Programmed temperature

Universidad Francisco de Vitoria **UFV** Madrid

EXAMPLE 2: COMPOSTING

- •Humidity (50-60%)
- •Aerobic (5-15% vol), thermophilic (55 ° C)
- •Profile pH
- •Fungi, bacteria
- •Organic waste

1.- SPECIAL BIOREACTORS


2.- SOLID STATE FERMENTATIONS

3.- PULSATING BIOREACTORS

4.- PHOTOBIOREACTORS

5.- PROCESS INTENSIFICATION

6.- MICROBIAL FUEL CELLS

3.- PULSATING BIOREACTORS

SPECIAL BIOREACTORS

Fermenter causing mixing within the culture medium by means of external pulses, without introducing any mechanical part.

Different external devices:

Plates, pistons,...

Gas pulses

Aerobic processes

High viscosity

• Applications:

Production of Metabolites

Waste treatment

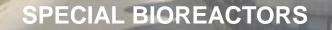
Universidad Francisco de Vitoria **UFV** Madrid

PULSATING BIOREACTORS

Microorganism	Product	Características proceso
Cyathus striatus	Antibiotics	Aerobic, high viscosity
Aspergillus niger	Citric acid	Aerobic, high viscosity
Zymomonas mobilis	Ethanol	
Acetobacter aceti	Acetic acid	Aerobic, immobilization
Levadura	SCP	Aerobic
Cultivo mixto	Waste Treatment	Aerobic, anaerobic

Universidad Francisco de Vitoria **UFV** Madrid

1.- SPECIAL BIOREACTORS

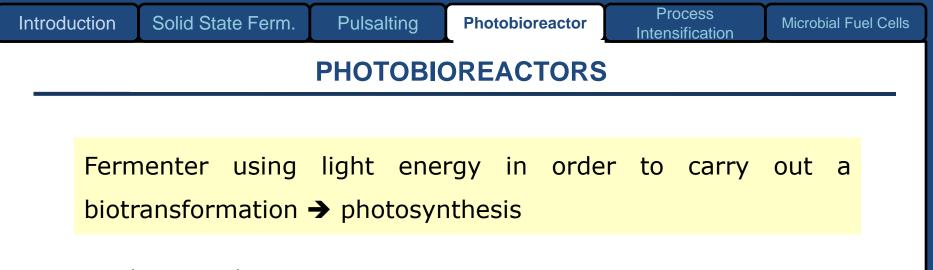

2.- SOLID STATE FERMENTATIONS

3.- PULSATING BIOREACTORS

4.- PHOTOBIOREACTORS

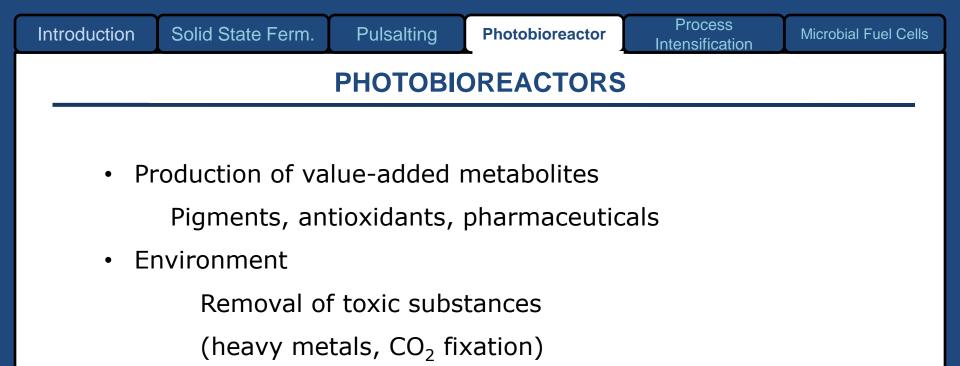
5.- PROCESS INTENSIFICATION

6.- MICROBIAL FUEL CELLS



4.- PHOTOBIOREACTORS

SPECIAL BIOREACTORS



- Photosynthetic organisms: photosynthetic bacteria, microalgae, cyanobacteria, ...
- $CO_2 \rightarrow Metabolites (autotroph)$
- Light energy (phothotoph)

BIOREACTOR DESIGN

• Donor of e^- (H₂O)

Contaminated soils

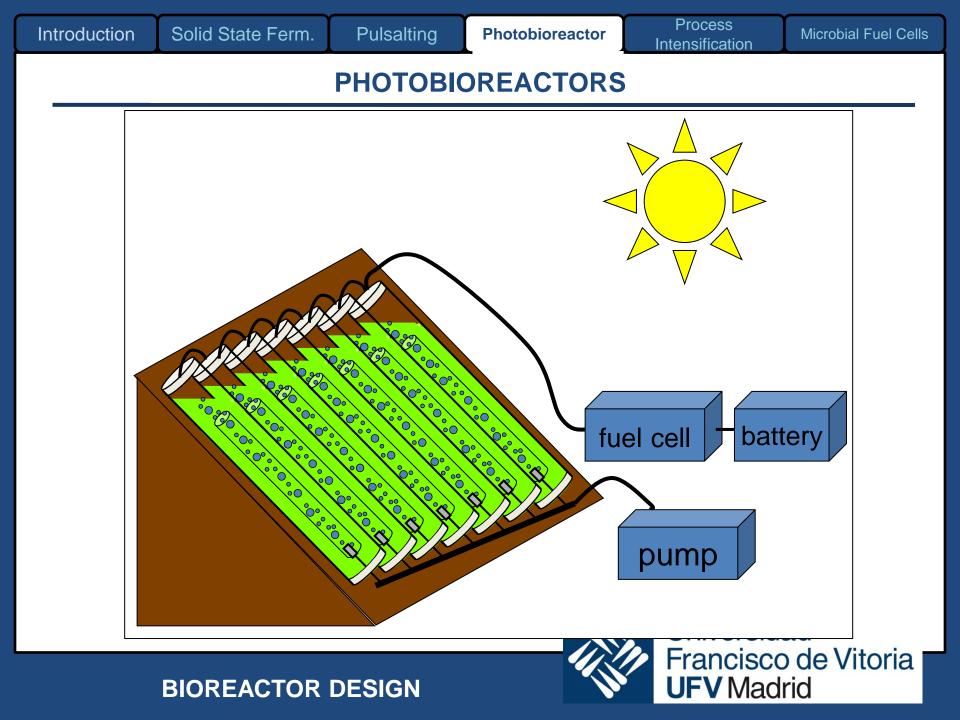
Regeneration of atmosphere within closed systems

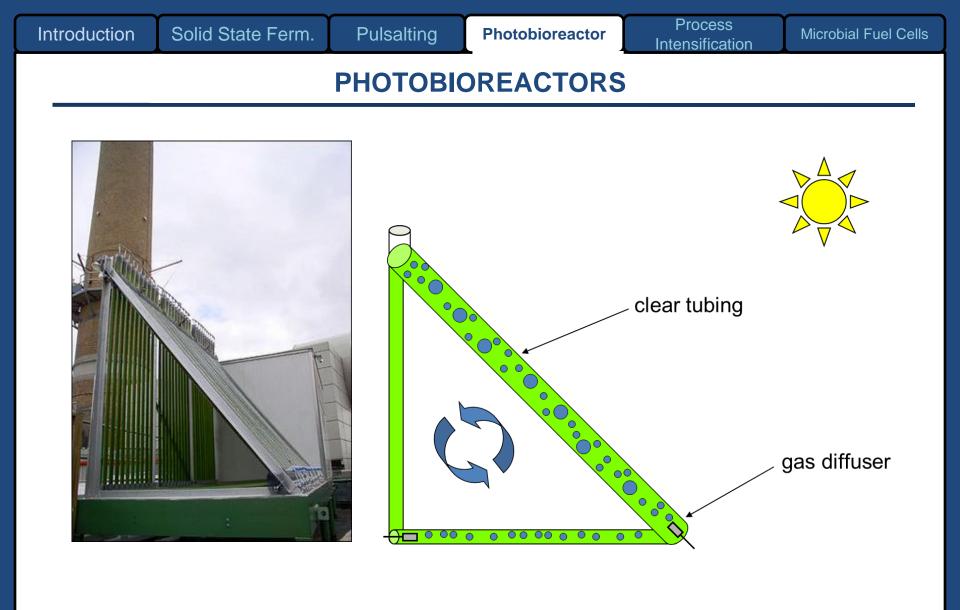
Universidad Francisco de Vitoria **UFV** Madrid

BIOREACTOR DESIGN

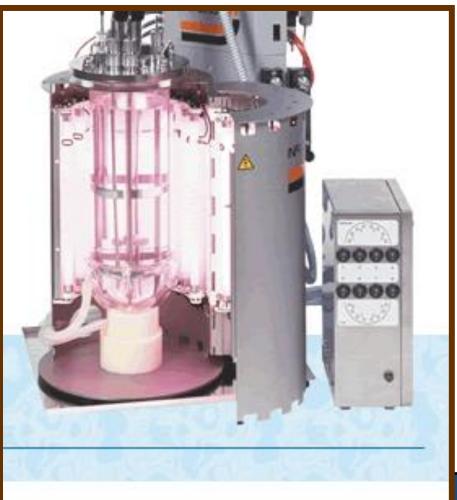
Pulsalting

Process Intensification


PHOTOBIOREACTORS



Francisco de Vitoria **UFV** Madrid



Universidad Francisco de Vitoria **UFV** Madrid

BIOREACTOR DESIGN

- Continuous
- Good control conditions
- Constant product quality
- Allows sterilization
- High energy expense
- Difficult scaling up

PHOTOBIOREACTORS

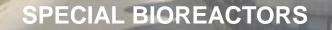
• Natural light

- Low energy expense
- Difficult control
- Purity
- Light-dark phases
- Lower Productivity

Universidad Francisco de Vitoria **UFV** Madrid

BIOREACTOR DESIGN

1.- SPECIAL BIOREACTORS


2.- SOLID STATE FERMENTATIONS

3.- PULSATING BIOREACTORS

4.- PHOTOBIOREACTORS

5.- PROCESS INTENSIFICATION

6.- MICROBIAL FUEL CELLS

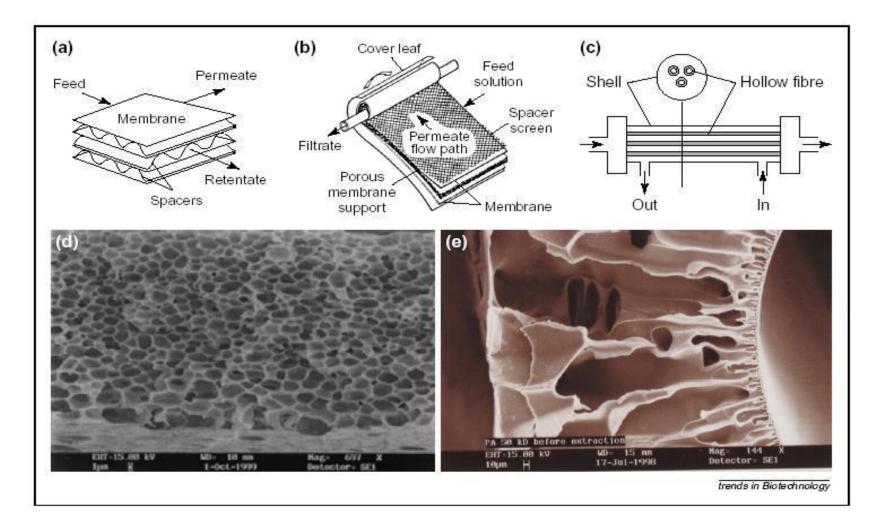
5.- PROCESS INTENSIFICATION

SPECIAL BIOREACTORS

PROCESS INTENSIFICATION

Situation in which, simultaneously with **transformation**, total or partial **separation of products** is carried out.

Reaction and **separation** are combined within a single unit.


Membrane selectively allows separation of reagents or products.

Universidad Francisco de Vitoria **UFV** Madrid

BIOREACTOR DESIGN

PROCESS INTENSIFICATION

Figure 2

The different types of membrane and membrane modules: flat-sheet membranes assembled in (a) plate and frame, and (b) spiral wound modules; (c) a hollow fibre membrane assembled in a tube-and-shell module; (d) a symmetric membrane: a cross section of a flat membrane made of polyetheretherketone (PEEK-WC); and (e) an asymmetric membrane: a cross section of a capillary membrane made of polyamide.

PROCESS INTENSIFICATION

- Extraction			
	Gas	CO ₂	
Hydrophobic membrane	Cells		
Hydrophobic membrane	Medium S,N,		P
	Extraction Agent		P
 Pervaporat Volatile Co Permeation ↓P permeat 	mps n comps		
			Universidad Francisco de
OREACTO	R DESIGN		UFV Madrid

PROCESS INTENSIFICATION

FOOD AND AGRICULTURE INDUSTRY

Biocatalytic reactors combined with microfiltration, ultrafiltration, reverse osmosis or membrane extraction.

- Reduction of juice viscosity by hydrolysis of pectins.
- Reduction of lactose content in milk by conversion into digestible sugars.
- Removal of peroxides from products.

Table 2. Applications of biocatalytic membrane reactors in the agro-food industry			
Reaction	Membrane bioreactor	Purpose	
Hydrolysis of lactose to glucose and β-galactose (β-galactosidase)	Axial-annular flow reactor	Delactosization of milk or whey for human consumption	
Hydrolysis of high-molecular-weight protein in milk (trypsin and chymotrypsin)	Asymmetric hollow fibre with gelified enzyme	Production of baby food	
Hydrolysis of raffinose (α-galactosidase and invertase)	Hollow fibre reactor with segregated enzyme	Production of monomeric sugars	
Hydrolysis of starch to maltose (α-amylase, β-amylase, pullulanase)	CSTR with UF membrane	Production of syrups	
Fermentation of sugars (yeast)	CSTR with UF membrane	Brewing industry	
Anaerobic fermentation (yeast)	CSTR with UF membrane	Production of alcohol	
Hydrolysis of pectines (pectinase)	CSTR with UF membrane	Production of bitterness and clarification of fruit juice and wine	
Fermentation of Lactobacillus bulgaricus	CSTR with UF membrane	Production of carboxylic acids	
Removal of limonene and naringin (β-cyclodextrin)	CSTR with UF membrane	Production of bitterness and clarification of fruit juice	
Hydrolysis of K-casein (endopeptidase)	CSTR with UF membrane	Milk coagulation for dairy products	
Hydrolysis of collagen and muscle proteins (protease, papain)	CSTR with UF membrane	Meat tenderization	
Conversion of glucose to gluconic acid (glucose oxidase and catalase)	Packed bed reactor	Prevention of discolouration and off-flavour of egg products during storage	
Hydrolysis of triglycerides to fatty acids and glycerol (lipase)	UF capillary membrane reactor	Production of foods, cosmetics and emulsificants	
BIOREACTOR DES	IGN	UFV Madrid	

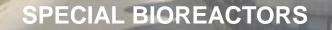
		and biomedical treatments	
Reaction	Membrane reactor	Purpose	
Conversion of fumaric acid to L-aspartic acid (Escherichia coli with aspartase)	Entrapment in polyacrylamide gel	Pharmaceuticals and feed additives	
Conversion of L-aspartic acid to L-alanine (Pseudomonas dacunhae)	Entrapment in polyacrylamide gel	Pharmaceuticals	
Conversion of cortexolone to hydrocortisone and predhisolone (Curvularia lunata/Candida simplex)	Entrapment in polyacrylamide gel	Production of steroids	
Conversion of acetyl-c,L-amino acid to L-amino acid (aminoacylase)	Ionic binding to DEAE-sephadex	Production of L-amino acids for pharmaceutical use	
Synthesis of tyrosine from phenol, pyruvate and ammonia (tyrosinase)	Entrapment in cellulose triacetate membrane	Production of Lamino acids for pharmaceutical use	
Hydrolysis of a cyano-ester to ibuprofen (lipase)	Entrapment in biphasic hollow fibre reactor	Production of anti-inflammatories	
Production of ampicillin and amoxycillin (penicilin amidase)	Entrapment in cellulose triacetate fibers	Production of antibiotics	
Hydrolysis of a diltiazem precursor (lipase)	Entrapment in biphasic hollow fibre reactor	Production of calcium-channel blocker	
Hydrolysis of 5-p-HP-hydantoine to p-p-HP-glycine (hydantoinase and carbamylase)	Entrapment in UF polysulfone membrane	Intermediate for the production of cephalosporin	
Dehydrogenation reactions (NAD(P)H-dependent enzyme systems)	Confination with UF-charged membrane	Production of enantiomeric amino acids	
Hydrolysis of DNA to oligonucleotides (DNase)	Gelification on UF capillary membrane	Production of pharmaceutical substances	
Hydrolysis of hydrogen peroxide (bovine liver catalase)	Entrapment in cellulose triacetate membrane	Treatment in liver failure	
Hydrolysis of whey proteins (trypsin, chymotrypsin)	Polysulfone UF membrane	Production of peptides for medical use	
Hydrolysis of arginine and asparagine (arginase and asparaginase)	Entrapment in polyuretane membrane	Care and prevention of leukaemia and cancer	

Abbreviation: UF, ultrafiltration.

BIOREACTOR DESIGN

UFV Madrid

1.- SPECIAL BIOREACTORS

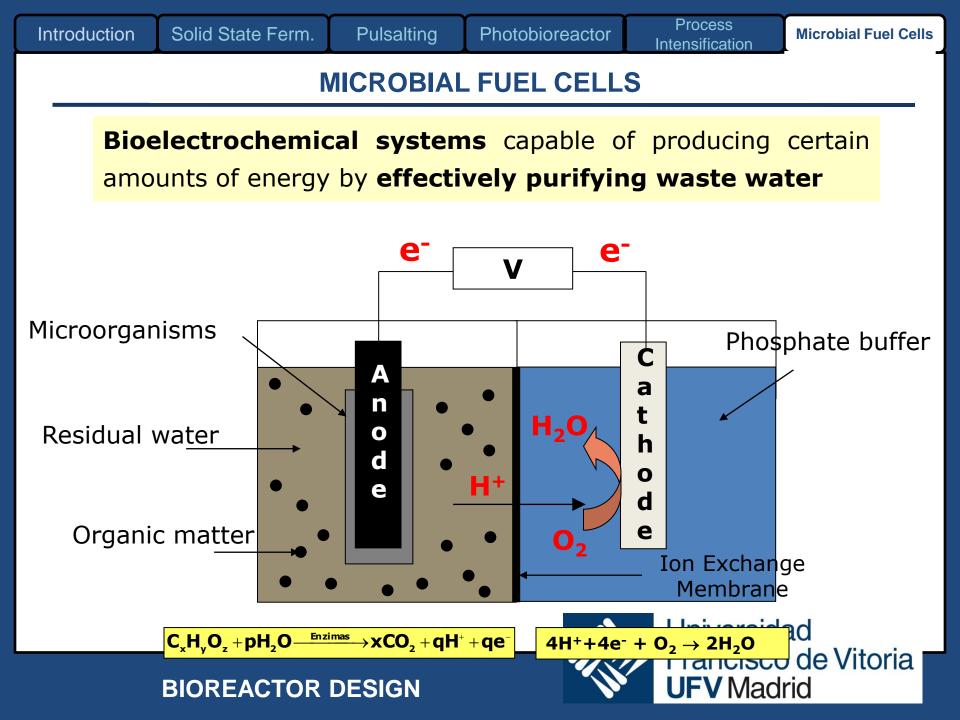

2.- SOLID STATE FERMENTATIONS

3.- PULSATING BIOREACTORS

4.- PHOTOBIOREACTORS

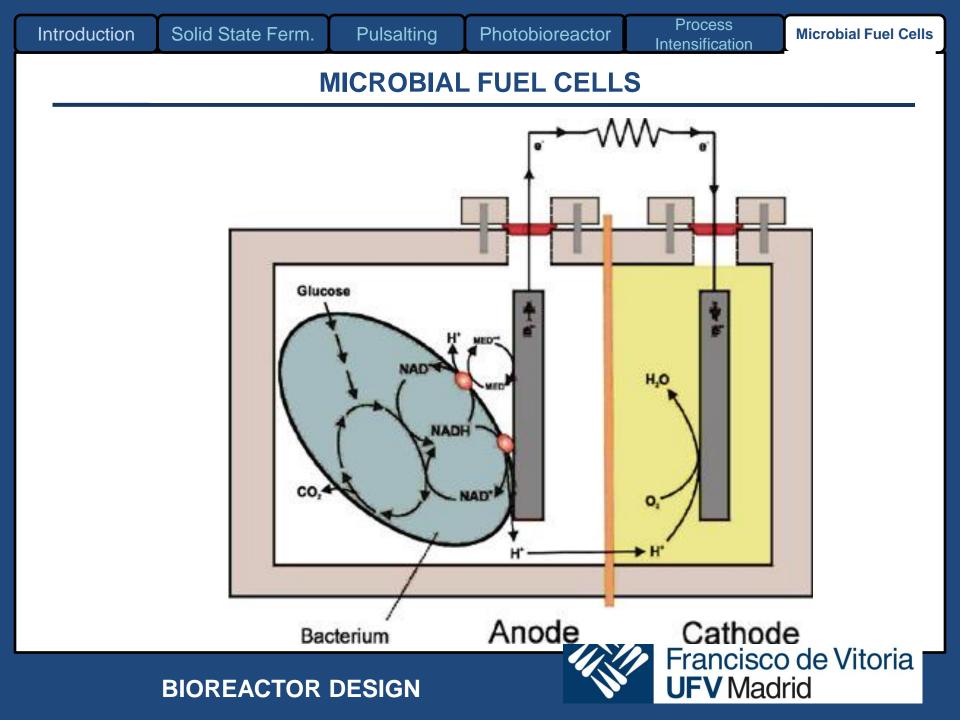
5.- PROCESS INTENSIFICATION

6.- MICROBIAL FUEL CELLS

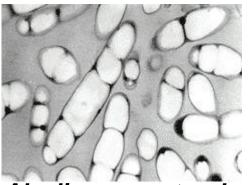


6.- MICROBIAL FUEL CELLS

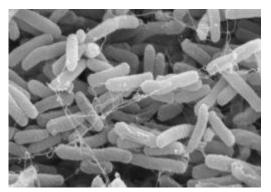
SPECIAL BIOREACTORS


AIM: capturing electrons to produce electricity.

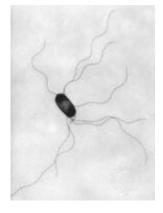
HOW:


- Through microbial oxidation of organic matter under anaerobic conditions.
- Diffusion of protons through a semipermeable membrane.
- Transfer of electrons transfer from the anode to the cathode.
- Reduction in cathode.

BIOREACTOR DESIGN

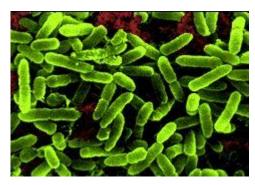


MICROBIAL FUEL CELLS


Alcaligenes eutrophus

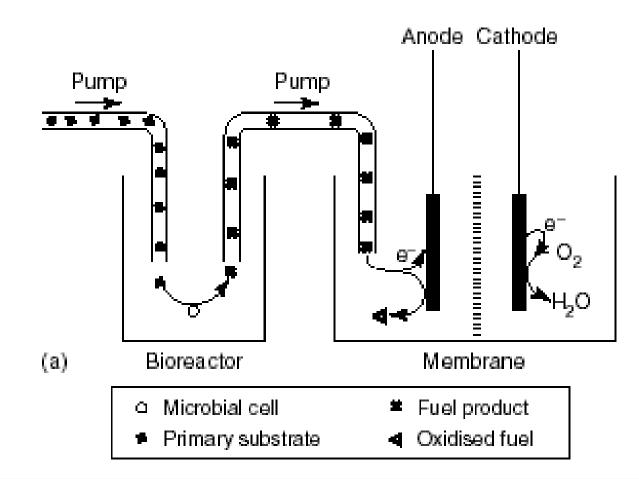
E. Coli

Anacystis nidulans


Proteus vulgaris

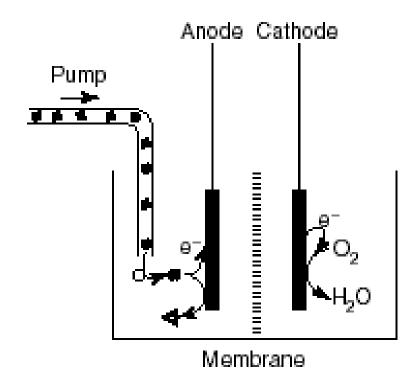
Bacillus subtilis

Pseudomonas putida



Pseudomonas aeruginosa Streptococcus lactis

Approach I: Fuel products (say hydrogen gas) are produced by fermentation of raw materials in the biocatalytic microbial reactor (*BIOREACTOR*) and transported to a biofuel cell.


The bioreactor is not directly integrated with the electrochemical part, allowing H_2/O_2 fuel cells to be conjugated with it.

Approach II: Microbiological fermentation can proceed in the anodic compartment itself.

It is a true biofuel cell!

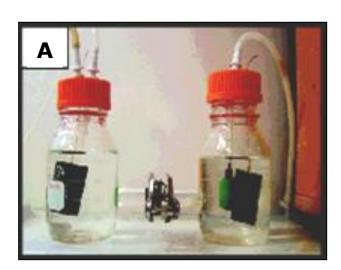
(not a combination of a bioreactor and a conventional fuel cell).

Hydrogen gas is produced biologically, but it is oxidized electrochemically in presence of biological components under milder conditions (than conventional Fuel cells) as dictated by the biological system

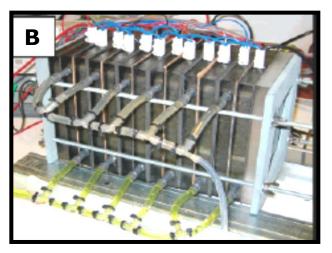
Microbial cell

- Primary substrate
- Fuel product
- Oxidised fuel

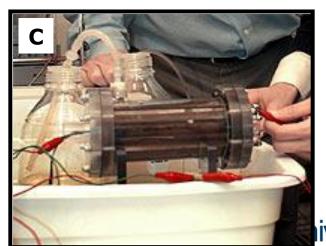
Introduction


Pulsalting

Photobioreactor


Process Intensification

Microbial Fuel Cells


MICROBIAL FUEL CELLS



Double Chamber Batch Cellss

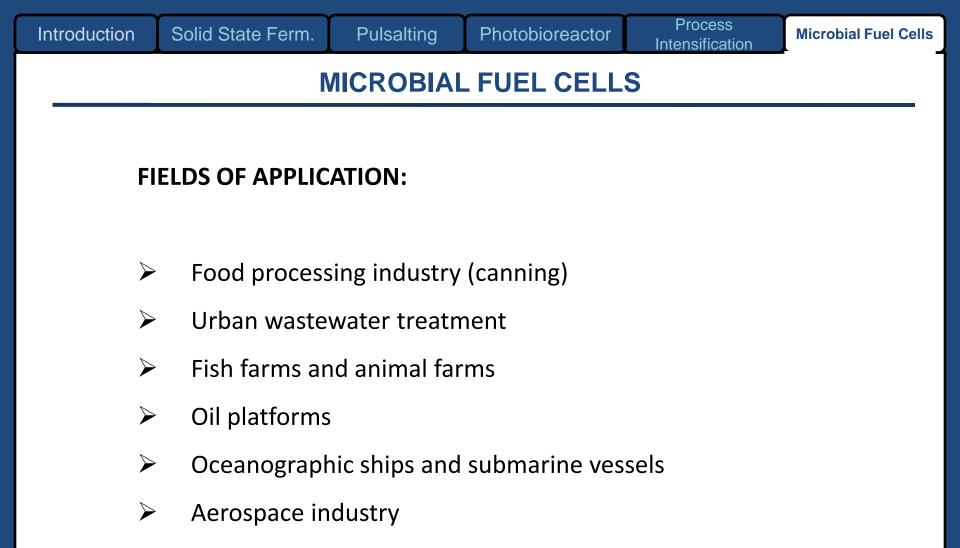
Continuous Cells

Pulsalting

Photobioreactor

Process Intensification

Microbial Fuel Cells


MICROBIAL FUEL CELLS

Universidad Francisco de Vitoria **UFV** Madrid

Universidad Francisco de Vitoria **UFV** Madrid

ANY QUESTION?

SPECIAL BIOREACTORS

SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 11. - Special Bioreactors

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School

UNIVERSIDAD FRANCISCO DE VITORIA